INTRODUCTION

Haemodynamically significant stenoses of the internal carotid artery are encountered in 2 to 8% of the general population and remain a modifiable risk factor for the development of acute cerebral circulatory impairment [1–3]. An “open” operation, i.e., carotid endarterectomy (CEA), is considered the gold standard of treatment. However, endovascular procedures [stenting of the internal carotid artery (ICA)] currently occupy also a prominent place in angiosurgery and may be recommended both with and without the use of temporary embolic protection devices [4, 5].

According to the findings of studies (during ICA stenting using both open — and closed-cell stents), approximately 40–60% of adverse neurological events occur in the postoperative period when the temporary cerebral embolic protection device has already been removed [6–8]. Prolapse of the body of an atherosclerotic plaque (ATP) through the cell stent has been suggested as one of the major causes of post-procedural complications following carotid artery stenting [9–12].

Special devices have been created to decrease the incidence of plaque prolapse and cerebral microembolisms. One of such devices is the CGuard stent wrapped with an additional MicroNet mesh on the outside around the frame and designed to prevent peri- and postprocedural embolism. According to the findings of the CARENET and PARADIGM trials, in using...
the CGuard stent the incidence of adverse cardiac or neurological events at 30 days of postoperative follow up equalled zero, thus suggesting its safety, with the results of diffusion-weighted magnetic resonance imaging (DW-MRI) of the brain demonstrating high efficacy of this device in terms of decreased incidence of new acute cerebral ischaemic lesions [13, 14].

Taking into consideration the absence of randomized studies aimed at comparing last-generation stents with open and closed cells, we formulated a hypothesis of the presented analysis: the CGuard stent should decrease the number of procedural and postprocedural foci of cerebral acute ischaemia according to the data of magnetic resonance imaging versus a comparison stent.

PATIENTS AND METHODS

The study was carried out as a prospective single-centre randomized trial (Figure). With due regard for the literature data and calculation of the power of the study we plan to include a total of 100 patients with haemodynamically significant ICA stenosis. The study was approved by the Local Ethics Committee of the NMRC named after E.N. Meshalkin under the RF Public Health Ministry (protocol № 7 dated May 26, 2017), as well as registered at ClinicalTrials.gov as NCT03488199. All documents are kept in accordance with the Good Clinical Practice standard. Inclusion criteria were as follows: internal carotid artery (ICA) stenosis of more than 80% in an asymptomatic patient and ICA stenosis over 50% in a symptomatic patient. More detailed information concerning the inclusion criteria is available at the ClinicalTrial.gov Web site. Currently, our study has enrolled a total of 50 patients randomized into two groups in a 1:1 ratio. The groups were balanced by age, gender, and accompanying pathology (Table 1). Group One patients underwent stenting of the internal carotid artery using the CGuard stent, with Group Two patients receiving the Acculink stent.

The primary endpoint of the study: incidence of acute cerebral ischaemia foci according to MRI findings at 24–48 hours and on POD 30.

Secondary endpoints of the study: a) technical success of the intervention; b) periprocedural and 30-day minor stroke and transitory ischaemic attack; c) periprocedural or 30-day major adverse events.

The procedure of “carotid artery stenting” was performed in all patients according to the standard technique, medicamentous therapy prior to surgery and in the postoperative period did not differ between the groups and complied with the guidelines on managing patients presenting with brachiocephalic artery disease [15].

STATISTICAL DATA ANALYSIS

The data were accumulated and primarily sorted using the Microsoft Excel 2010 software programme. The obtained results were processed using the software package for statistical analysis “Statistica 13” (StatSoft Inc., USA). The quantitative data were expressed as the median (25th; 75th percentile), with the fractions expressed in percent. The normal distribution of the quantitative data was checked by means of the Shapiro–Wilk test. The normally distributed quantitative data were presented as the mean ± standard deviation, with the fractions expressed in percent. The normal distribution of the quantitative data was checked by means of the Shapiro–Wilk test. The normally distributed quantitative data were presented as the mean ± standard deviation, with the 5% and 95% quantiles. The statistical significance of differences between the groups was determined with the help of the Mann–Whitney U test for quantitative data and with the help of the Fisher’s exact test
The findings of MRI at baseline revealed no foci of acute cerebral ischaemia. However, disccirculatory-pattern foci corresponding to the age-related changes and/or a history of AICC were determined in one third of the patients.

Two (8%) symptomatic patients in the Acculink group were found to have neurological deficit (paresis/paralysis) prior to surgery, with 3 (12%) patients diagnosed as having this pathology in the CGuard group (p≥0.05).

During 30 days 48 (96%) patients demonstrated no alterations in the neurological status (as assessed by the NIHSS and Rankin Scale). Two (4%) Group One patients were found to have cerebral ischaemic stroke (reliably insignificant). One initially asymptomatic patient 24 hours after stenting of the coronary artery developed signs of mild neurological deficit in the ipsilateral basin, with a score of 1 by the NIHSS and 1 point by the Rankin Scale. The stent in the carotid artery by the ultrasonographic examination was free from haemodynamically significant changes.

In the analysed groups there were no significant differences in the incidence and total volume of brain for qualitative data. Intergroup analysis of dependent quantitative data was performed using the Wilcoxon signed-rank test and that of qualitative data by means of the McNemar’s test. Differences were regarded as statistically significant if p<0.05.

RESULTS

The success rate of surgical intervention amounted to 100% in both groups, with no complications (haematoma, arterial dissection, etc.) in the area of access revealed. However, mention should be made of an intraoperatively encountered significant technical peculiarity related to poor flexibility of the construction in the form of difficulty in delivering the open-cell stent (CGuard) to the stenosis zone.

The findings of ultrasonographic examination of brachiocephalic arteries demonstrated a significant difference in blood flow velocity before and after surgery in each group, thus also confirming success of the procedure (Table 2).
lesions by the MRI findings 24–48 hours after surgical intervention. However, in the CGuard group there was a tendency towards detecting singular and smaller-size local foci as compared with the Acculink group patients. Mention should also be made that the location of ischaemic portions was identical in both groups (Table 3).

In the CGuard group, all detected foci of acute ischaemia at the in-hospital stage diminished by day 30 of follow up, with no new portions of lesion revealed. In the Acculink group, new foci of acute symptom-free ischaemia were detected in two cases. In one patient zones of lesion were revealed on control MRI by day 30 of follow up, with no new portions of lesion revealed. The obtained findings demonstrated that the number of MRT-detected cerebral embolisms after stenting of ICA with Acculink and CGuard was similar. Therefore, there is no superiority of the design of the open-cell stent versus the closed-cell stent with respect to cerebral embolization. Besides, technical drawbacks of the closed-cell stent, complicating the course of the operation were shown within the time frame of the study.

Currently available on the market are two brands of “double-layer” stents: Roadsaver, Terumo/Casper, Microvention and CGuard, InspireMD. Apart from the differences in the nitinol frame design (braided closed cell in RoadSaver/Casper and open cell in CGuard) the two double-layered carotid stent systems have other important design differences. These include the position of the mesh in relation to the nitinol frame (outside the frame for the CGuard EPS and inside in the case of the RoadSaver/Casper) and the mesh material (braided nitinol in RoadSaver/Casper and PET single-fibre knitted MicroNET in CGuard) [16–23].

There are some articles reporting efficacy of the RoadSaver and Casper stents [17–23]. However, it should be mentioned that the RoadSaver stent (Terumo, Tokyo, Japan) is branded as Casper (Terumo, Saint-Germain-en-Laye, France), hence these stents are identical and the articles presented hereinafter should be regarded as the results of using one stent under various trade names.

In their article, Machnic R. reported a retrospective assessment of 30-day safety and efficacy of a total of 41 procedures of internal and common carotid artery stenting procedures using the RoadSaver double nitinol layer micromesh in 40 non-consecutive patients with symptomatic or high-risk carotid artery stenosis. Proximal (n=27) or distal (n=14) embolic neuroprotection was used. The RoadSaver stents were implanted successfully in all cases. One minor stroke occurred after common carotid artery intubation with a guiding catheter (before stent deployment) and one transient postprocedural ischemic attack (TIA) of the ipsilateral cerebral hemisphere was observed. No other clinical complications were observed. Based on the above-mentioned findings, the researchers came to a conclusion that carotid artery stenting using the dual-layer RoadSaver nitinol stent was safe and effective [16]. Broussalis E. described their experience in treating a total of 110 patients with severe carotid artery stenosis (median degree of stenosis 80%, median length of stenosis 10 mm)
with the help of implantation of the Casper stent. Postprocedurally, 7.3% (8/110) of patients were found to have ischemic DW-MRI lesions. They were all “silent foci of acute cerebral ischaemia”, i. e. were free from clinical manifestations [21]. The results suggesting efficacy and safety of RoadSaver/Casper stents were also reported in the article by Ruffino M.A., where the incidence of acute ischaemia foci by the findings of DWI 24 hours after stenting amounted to 30.4% [22]. In their articles Nerla R. and Orlando D. reported one new acute ischaemia lesion (0.08 cm3) and complete resolution of all but 1 periprocedural lesion [14].

We for the first time in the world made an attempt to assess two types of stents in a randomized study officially entitled the SIBERIA trial and aimed at comparing widely used in clinical practice Acculink and CGuard stents [24]. Taking into consideration that the additional mesh on the struts of the CGuard stent contains 150-µm pores, we used as a protecting device in all patients the Emboshield trap whose filter diameter is also 150 µm. Based on the interim results of this trial, in both groups of stents (Acculink and CGuard) we revealed an inconsiderable number of bilateral and contralateral lesions of the brain, with the incidence of cerebral embolization being similar in both groups as determined by the findings of diffusion-weighted magnetic resonance imaging.

CONCLUSION

Analysing the obtained results of the randomized study of the two stents (open-cell and closed-cell types) did not show advantage of either device in endovascular treatment of patients with haemodynamically significant lesions of the internal carotid artery.

Conflict of interest: none declared.
Bugurov S.V., et al. Stenting of the carotid artery with CGuard and Acculink stents: interim results of a randomized trial

